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IMPULSIVITY AND HETEROGENEITY 
  

Abstract. Preference heterogeneity occurs when discount rate varies over 

time, goods and decision-makers.  Present paper is the first paper which 

formulates a reusable behavioral framework to calculate time-consistent/time-

inconsistent solution under heterogeneous non-constant discount rate.  Our 

stochastic non-constant heterogeneous quasi-hyperbolic (SNHQH) framework 

includes (i) SNHQH discount function, (ii) its non-standard HJB, and (iii) its 

behavioral equation. Our HJB has generalized all related HJBs. The SNHQH 

framework is prolific of usages: it can either serve a discount function or act as a 

tool of dimension reduction. The former usage allows us to analyze a multiple-self 

model, in which the financial market is driven by two Brownian motions.. 

Keywords: time-consistent solutions, time-inconsistent preferences, 

sophisticated decision-maker. 

 

JEL Classification: O30 

 

 

1.Introduction 

Overcoming the immense difficulties arising from the analytically 

complicated value function, this paper establishes, for the first time, a discounting-

HJB-behavior framework, called SNHQH framework. As an example, the SNHQH 

framework is employed to study a time-inconsistent decision-maker who seeks to 

maximize her discounted payoff by optimally allocating her wealth. 

 

1.1. Literature 

1.1.1. Literature on exponential discounting and conventional  

          optimization 
Preference heterogeneity and time-inconsistency are by far two 

predominant factors effecting decision-making processes.  Unfortunately, most 

economics and financial theories, including theories on preference heterogeneity, 

overlook time-inconsistency and establish themselves as exponential discounting 

models. These exponential discounting models are usually solved via conventional 
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optimization (e.g. Pontryagin Maximum Principle; standard HJB in Pham, 2009).  

Both exponential discounting and conventional optimization are built upon the 

assumptions of constant discount rates and static time preferences.  These 

assumptions, however, have long been criticized to unrealistic (e.g. Phelps and 

Pollack, 1968; 2017 Nobel Prize Winner Thaler, 1981). 

Because the real preferences of a decision-maker are always dynamically 

inconsistent (Strotz, 1955), an individual should be looked upon as a leader-

follower game among successive selves. Exponential discounting is clearly 

counterfactual (Loewenstein and Prelec, 1992; Odonoghue and Rabin, 2015), while 

conventional optimization can cause distortions and misspecifications (Phelps and 

Pollack, 1968). 

 

1.1.2. Literature on non-exponential/non-constant discounting 
Over the past quarter-century, many discount functions have been invented 

to translate psychological factors into computable formulas. Among them, the 

following discount functions translate psychological factors into computable 

formulas and capture time-inconsistency among selves: 

(i) SQH. The stochastic quasi-hyperbolic (SQH) discount function in 

Harris and Laibson (2013) allows computing the effects of immediate gratification 

and is a prominent cornerstone of various papers. 

(ii) NC. The non-constant (NC) discount function in Karp (2007) uncovers 

preferential factors affecting decision-making mechanism.  

(iii) SNQH. As shown in definition 2.1, the stochastic non-constant quasi-

hyperbolic (SNQH) discount function in Peng and Hager (2017) generalizes the 

SQH discounting and the NC discounting. 

 

1.1.3. Literature on non-standard dynamic programming 

The above-mentioned discount functions have been—and can only be— 

solved by developing their corresponding non-standard Hamilton-Jacobi-Bellman 

(HJB) equations. Two methodologies are popular in deriving HJBs: (i) the 

continuous-time methodology in Ekeland and Pirvu (2008), Ekeland and Lazrak 

(2010) and Ekeland, Mbodji and Pirvu (2012) is mathematically rigorous and has 

distinguished resilience, depth and tightness; (ii) the discrete-time methodology in 

Karp (2007) is based on Euler-Maruyama (EM) discretization and opens up 

previously inaccessible problems.  

 

1.1.4. Literature on preference heterogeneity 

Two factors contribute to preference heterogeneity. First is time 

heterogeneity, in which a decision-maker steeply discounts delayed rewards at the 

earlier phases of her life cycle and puts extra weight on a retirement pension or 

heritage (e.g. Myerson, 1995; Simon, 2010) as decisions are pushed into the future.  

Second is product heterogeneity. For example, the discount rate of one product 

does not apply for another product. 
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The preference heterogeneity is widely discussed, but rarely resolved. 

Under exponential discounting, the preference heterogeneity has been studied (e.g. 

Garleanu and Panageas, 2015). Under non-exponential and non-constant 

discounting, in contrast, the heterogeneity has never been captured by a discount 

function, let alone being controlled by a device. 

 

1.2. Main work 

This paper makes three contributions: (i) definition 2.1 puts forward a 

stochastic non-constant heterogeneous quasi-hyperbolic (SNHQH) discount 

function which includes all discount functions mentioned in subsection 1.1 as its 

special cases. (ii) theorem 2.2 uses a game-theoretic attitude to derive a reusable 

HJB equation, whereby a SNHQH discounter can reach time-consistency in 

disparate fields. (iii) sections 3--5 study a financial model in the presence of non-

exponential and non-constant discounting, which otherwise is impossible when 

using conventional optimization (e.g. optimal control in the framework of 

Pontryagin and Lagrange). 

 

2. A computational and reusable frameworks 

This section will create the SNHQH discount function and deduce its HJB.  

2.1. Setting and problem 

To guarantee that the SNHQH-HJB proposed by theorem 2.2 is 

applicable to both deterministic and stochastic examples, this section is constructed 

as follows in the stochastic setting. Throughout the whole article, it is presumed 

that that the following setting is fulfilled. Let  0,T    be a fixed time 

horizon. Let ( ) F, P represent a complete probability space, satisfying the usual 

conditions (i.e. the filtration  
 0t t T


,

F F is right-continuous and increasing; 

each
tF contains P -null sets inF ).  The norm is given by 

1

22

1

a

a

 




 
  
 
 , 

for all  
 1,2, ,

a

a k
 


 ,  R ,N . 

For  0,t  , the cost functional is as follows 

 ( , , ) ( , ) ( ), ( ), ( , ) ( ( ), )

T

x

t

t

J x u t D t s L X s u s s ds D t T F X T T
 

  
 
E  
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where (i) E  is the expectation w.r.t. P . ( )x

t X t x    E E is the  

conditional  expectation. (ii)  : ,d mL t T  R R R is a utility 

function;  , : 1, 2,d mN  (iii)  : ,dF t T R R  is a terminal function.  

(iv)  : , mu t T   RU is square-integrable process. The control set 

  : , mu t T U R is a compact metric space.  (v)  : 0,X T   

d RX is a stochastic process under the control policy u . The state set X  is a 

metric space. The endowment at time t  is given by ( )X t x . For simplicity, set 

:uX X . (vi) 
0 0( )X t x

 
is the initial state at the time 

0t t and a 
dR -valued 

random variable.  0

l

x  E , for  1,l  . (vii) ( , )D t s is a discount 

function, 0 t s T   , with the bounds  ( , ) 0D t  E  and  ( , ) 1D t t E for 

P --a.s.    

For every  ( , ) ,dx t t T R , V is a value function if and only if 

( , ) inf ( , , )
u

V x t J x u t



U  

where  : ,dV t T R R  is twice continuously differentiable and uniformly 

bounded.   

The stochastic optimal control problem is 

 ( , ) inf ( , ) ( ), ( ), ( , ) ( ( ), )

T

x

t
u

t

V x t D t s L X s u s s ds D t T F X T T


 
  

 
E

U

              (2.1) 

subject to  

 ( ) ( ), ( ), ( ( ), ( ), )

( )

dX t X t u t t dt X t u t t dz

X t x

  

                                              

(2.2) 

where  

(i)  : , mz t T  R  is an m -dimensional Brownian motion.  



 

 

 

 

 

 
Impulsivity and Heterogeneity 

 

317 

 

DOI: 10.24818/18423264/53.4.19.19 
 

 

(ii)  
   

 ,

1,2, , , 1,2, ,
: ,a b d m d m

a d b m
t T  

 
   R R R is a locally Lipschitz 

continuous function. Meanwhile, the diffusion coefficient  is the infinitesimal 

standard deviation of the process X .     

(iii) ( )dX t  is a d -dimensional SDE.     

(iv)  
 

 
1,2, ,

: ,a d m d

a d
t T 


   R R R is a locally Lipschitz continuous 

function whose derivative grows at most polynomially. Similarly to  , the drift 

coefficient   is the infinitesimal mean of the process X .  

Throughout this paper, all other processes have the dimensions and 

properties implied by equations (2.1)-(2.2), and all functions and stochastic 

processes are progressively measurable. 

 

2.2. SNHQH discounting  

To the best of our knowledge, equation (2.3) is the first discount function 

which reconciles heterogeneous, quasi-hyperbolic and non-constant preferences. 

Definition 2.1. (SNHQH discounting). Self t evaluates her payoff enjoyed at time 

s with 




 

( ), ,
( , )

( , ) ( ), ,

( ), ,

s t s t t
t s

D t s s t s t T

T t s T

 

  



        
      


    

D1

1 1

1

1 1 1

2

                                      (2.3)

 

where 

(i) 
qD :  the SNQH discount function in Peng and Hager (2017)and satisfies 

  
 

( , ) 1

( , ) 0,1

q

q

t t

t s

 




D

D
          for  ( , ) 0,s t  

                                                   
(2.4) 

(ii) ( )q s t  : long run discount factor 0
( )

( )

s t
qr d

q s t e
 




   

(iii) ( )r  : a non-constant long-run discount rate. The higher the value of ( )r  , the 

less a self cares about the future selves who sit in  ,t   . 

(iv)  :  an exponentially distributed random variable,  
1




E  
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(v)  : a present bias parameter,  0,1   

(vi) q : superscript.   ,q 1 2 can be interpreted as two SNQH discounters or two 

products . 

 
2.3. Non-standard HJB 

Let tr  and 
T

denote trace and transpose of matrices.  Let 
xV  and 

xxV  

denote the gradient of the function V  and its Hessian matrix respectively. The 

result in the theorem 2.2 can be extended to include cases where the functions do 

not satisfy the regularity properties imposed in subsection 2.1 (c.f. Ngo and 

Taguchi, 2017).  

Theorem 2.2. the value function   2,1( , ) ,dV x t C t T R   defined by equations 

(2.1) -(2.2) satisfies 

 

( , )
( ) ( , ) ( , )

( , , ) ( , , ) ( , )

inf 1
( , , ) ( , , ) ( , )

2

x

u
xx

V x t
r T t V x t K x t

t

L x u t x u t V x t

trace x u t x u t V x t



 


  



  
 
  
 

U  

Proof. This can be proved by adapting equation (2.3) with Peng and Hager (2017) . 

Theorem 2.3. (Verification Theorem) Suppose J is differentiable in a 

 neighborhood. For all 0  , * ( )u s  is an equilibrium rule if and only if  

0

( , , ) ( , , )
lim 0

J x u t J x u t

 




 

where 

 ( ) ,
( )

( )

v s s t t
u s

s s t

 

 

   
 

   
 

Proof. This can be proved by adapting equation (2.4) with Ekeland, Mbodji and 

Pirvu (2012).  

Theorem 2.3 validates theorem 2.2.  Providing that selves outsides of the 

 ,t t   interval are keen on ( )s  strategy, the optimal strategy for self t in the 
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interval  ,s t t    is ( )s  strategy as well. 

3. Application: a heterogeneous model 

This section exhibits SNHQH discounting application to real life decision-

making process, and disentangles heterogeneity in present bias from heterogeneity 

in behaviors. 

3.1. Heterogeneity in present bias 
Our setting is a continuous-time Markovian economy with stochastic 

investment opportunities, allowing for a potentially incomplete market. We 

consider an arbitrage-free market in a complete probability space ( ) PF,  with 

terminal timeT , 0T  . The filtration  
0t t

F  is generated by two m -dimensional 

Brownian motions 
1Z and 

2Z , satisfying the usual conditions of right-continuity 

and augmentation by P -null sets.  A representative individual earns income from 

low risk assets 
1Q , high risk asset  

2Q  and the riskless asset 
3Q . The risky assets 

1Q  and 
2Q  are two n  ( m ) dimensional stochastic processes. 

 1
1

1

( )

( )

dQ t
dt dZ

Q t
       low-risk asset --- quantitative investment fund 

2
2

2

( )

( )

dQ t
dt dZ

Q t
        high-risk investment---stock 

3
0

3

( )

( )

dQ t
dt

Q t
                  risk-free investment---saving 

where
0  is a n m  matrix-valued interest rate process.    resp. denotes a 

n -dimensional mean rate of return on quantitative investment fund (resp. stock). 

  resp. denotes a n m  matrix-valued volatility of the 

quantitative investment fund (resp. stock).   is the covariance between 
1Q  and 

2Q . 

p  resp. is the fraction of total wealth invested in quantitative investment fund 

(resp. stock).  Denoted by c  consumption, by W  wealth. For simplicity, assume 

1n m  . The profit generating process is 
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 

 

 

0

0 0

1 2

( )
( ) ( ) ( )

( )

( ) ( ) ( ) ( ) ( )

( )

p t
dW t W t c t dt

t

W t p t dZ t t dZ t

W t w

 

   

 

     
    

      

 


 

                            (3.1) 

Let 
, ,: c p

WV V  be a value function, U  utility function, D  the discount function 

defined in equation 2.3. An individual maximizes her utility from consumption 

( ( ))U c t  and final wealth ( ( ), )F W T T .  

( , ) ( , ) ( ( ), ) ( , ) ( ( ), )

T

w

t

t

V w t D t s U c s s ds D t T F W T T
 

  
 
E             (3.2) 

 

3.2. Heterogeneity in behaviors 
The decision-maker is formulated in a three-dimensional behavioral space: 

precommitted, naïve, sophisticated, denoted by superscripts P , N , S  

respectively. At time 
0t , the precommitted player q  and the naive player q have 

the following value function (c.f. Ekeland and Pirvu, 2008; Ekeland and Lazrak, 

2010; Ekeland, Mbodji and Pirvu, 2012): 

 ,

0,P NV w t
 

Proposition 3.1.Under the conditions of the theorem 2.4, for  0 0,t T , the naïve 

and precommitted solution of equations (3.1)-(3.2) satisfy 
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   

 

,
, 0

0 0

0

,
0 0 0

0

0 0

2 2, 2 ,
0 0 0 2 0

22 2

0

,

( , )
( ) ( , )

( , )
( ( ))

( )
max

( ) 2 ( ) ( ) ( , )1

2 ( )

( , ) ( ),

P N
P N

P N

c P N

P N

V w t
r t t V w t

t

w pw V w t
U c t

ww c t

p t p t t V w t
W

wt

V w T F w T T



    



  

 

 
  


      
   

    
  

    
       

 



1

                    (3.3) 

Proposition 3.2. Under the conditions of the theorem 2.3, the sophisticated 

solution of eq.3.2 satisfies 

 

 

 

0

0 0

, 2
2 2 2 2 2

2

( , )
( ) ( , ) ( , )

( , )
( ( ))

( )
max

1 ( , )
( ) 2 ( ) ( ) ( )

2

( , ) ( ),

S
S

S

c S

S

V w t
r T t V w t K w t

t

w V w t
U c t

wpw w c t

V w t
p t p t t t w

w

V w T F w T T



  

  

    

 
   



     

   
        

  
        

 



2

                     (3.4) 

 

4. Explicit Solutions 

This section solves explicitly the optimal policies in the sophisticated, 

naïve and precommitted paradigms. Under logarithmic utility, the functions in 

equations (3.3)-(3.4) have the form of 

 

( , ) ( ) ln ( )

( ) ln

( ), ln

V w t t w t

u c c

F w T T w

 



  



                                                                                

(4.1) 

Substituting equation (4.1) into equations (3.3)-(3.4), one obtains the 

optimal consumption ratio 



 

 

 

 

 

 

Ling Peng, Peter Eris Kloeden 

______________________________________________________________ 

322 

 

DOI: 10.24818/18423264/53.4.19.19 

 
 

( ) 1

( ) ( )

c t

W t t
                                                                                                        (4.2) 

where  

paradigms   

(i) 

pre-committed 

( ) ( )
( )

( ) ( )

T

P

t

T s
t ds

t t

 
 

 
 

1 1

1 1
 

(ii) 

naive 
( ) ( ) ( )

T

N

t

t T t s t ds      
1 1

 

(iii) 

sophisticated 

  ( )

( )
( ) ( ) ( )

( )

1
( ) 1 ( )

( ) ( )

T

S S

t

u sT

S

s

T t
t T t s ds

T s

e
s u s du

r u s r T s




  



 
 

 


  



  
   
    





1

2
2

2

1 1

1

1 2  

 

 

5. Conclusion 

This paper designs a pragmatic SNHQH  framework to evaluate utility 

flows for different products/players and to calculate time-consistent solutions. The 

SNHQH framework incorporates many successful frameworks (e.g. SQH, NC, 

SNQH) as its special cases, and can be used either in the scenario of~ `a single 

product and multiple SNQH discounter' or in the scenario of~ `a single SNHQH 

discounter and multi-product'.  Then, we develop a behavior-analyzing approach, 

fundamentally different from the existing ones, to discriminate heterogeneity in 

present bias from heterogeneity in behaviors. Furthermore, we obtain explicit 

solutions to a general model, and closed-form solutions for an important case 

analysis. Simulation confirms that the sophisticated decision-maker (who uses the 

non-standard HJB enjoys higher resource consumption than the precommitted and 

naïve decision-makers (who use the conventional HJB). 

There exists a substantial amount of future research potential in applying 
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the SNHQH framework to OR, economics finance, etc.  Firstly, future users can 

model the coexistence of overconsumption and attenuated discounting of reward 

by building an objective function with `a single SNHQH discounter and multi-

product’.  Secondly, future users can readily adapt the SNHQH framework to 

exponential discounting models (e.g. Garleanu and Panageas, 2015) or financial 

elements (e.g. hedging vehicles against the uncertainty). Thirdly, the SNHQH 

framework can be applied to behavioral OR setting and solved with commercial 

solvers. 
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